Corrigendum to "On $(sigma, tau)$-module extension Banach algebras"
author
Abstract:
In this corrigendum, we give a correction of one result in reference [1].
similar resources
On module extension Banach algebras
Let $A$ be a Banach algebra and $X$ be a Banach $A$-bimodule. Then ${mathcal{S}}=A oplus X$, the $l^1$-direct sum of $A$ and $X$ becomes a module extension Banach algebra when equipped with the algebra product $(a,x).(a',x')=(aa',ax'+xa').$ In this paper, we investigate biflatness and biprojectivity for these Banach algebras. We also discuss on automatic continuity of derivations on ${mathcal{S...
full textModule-Amenability on Module Extension Banach Algebras
Let $A$ be a Banach algebra and $E$ be a Banach $A$-bimodule then $S = A oplus E$, the $l^1$-direct sum of $A$ and $E$ becomes a module extension Banach algebra when equipped with the algebras product $(a,x).(a^prime,x^prime)= (aa^prime, a.x^prime+ x.a^prime)$. In this paper, we investigate $triangle$-amenability for these Banach algebras and we show that for discrete inverse semigroup $S$ with...
full textOn (σ, τ)-module extension Banach algebras
Let A be a Banach algebra and X be a Banach A-bimodule. In this paper, we define a new product on $Aoplus X$ and generalize the module extension Banach algebras. We obtain characterizations of Arens regularity, commutativity, semisimplity, and study the ideal structure and derivations of this new Banach algebra.
full textLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
full texton module extension banach algebras
let $a$ be a banach algebra and $x$ be a banach $a$-bimodule. then ${mathcal{s}}=a oplus x$, the $l^1$-direct sum of $a$ and $x$ becomes a module extension banach algebra when equipped with the algebra product $(a,x).(a',x')=(aa',ax'+xa').$ in this paper, we investigate biflatness and biprojectivity for these banach algebras. we also discuss on automatic continuity of derivations on ${mathcal{s...
full textmodule-amenability on module extension banach algebras
let a be a banach algebra and e be a banach a-bimodule then s = a e, the l1-direct sum of a and e becomes a module extension banach algebra when equipped with the algebras product (a; x):(a′; x′) = (aa′; a:x′ + x:a′). in this paper, we investigate △-amenability for these banach algebras and we show that for discrete inverse semigroup s with the set of idempotents es, the module extension bana...
full textMy Resources
Journal title
volume 07 issue 01
pages 73- 74
publication date 2018-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023